## Journal of Chromatography, 186 (1979) 207–218 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

# CHROM. 12,078

# AUTOMATIC SYSTEM FOR THE HIGH-RESOLUTION GAS CHROMATO-GRAPHIC ANALYSIS OF GASOLINE-RANGE HYDROCARBON MIXTURES

#### E. R. ADLARD, A. W. BOWEN and D. G. SALMON

Shell Research Ltd., Thronton Research Centre, P.O. Box 1, Chester CH1 3SH (Great Britain)

#### SUMMARY

Equipment has been developed for the high-resolution gas chromatographic analysis of complex hydrocarbon mixtures in the gasoline boiling range. The equipment can operate continuously; the data generated are automatically presented as a printed list and are also stored on magnetic cassette tape for further processing.

## INTRODUCTION

In the late 1960s it was shown that low-resolution gas chromatography (GC) was an excellent tool for the prediction of the volatility characteristics of gasolines in terms of the standard parameters of Reid Vapour Pressure and ASTM distillation<sup>1</sup>. A logical extension of this work was to predict other gasoline properties, in particular octane rating, by high-resolution GC.

High-resolution GC of gasolines was pioneered by Sanders and Maynard<sup>2</sup> but, with the crude methods of sub-ambient temperature control available at the time, it was difficult to achieve good retention data precision; this, in turn, made automatic data handling a difficult task. Gradually, from the early 1970s onward, the manufacturers of GC equipment introduced reliable sub-ambient temperature control of GC columns and automatic devices for sample introduction; at the same time, considerable advances were made in data handling. The conjunction of these three developments has made possible the continuous operation of GC apparatus. The ability to do this is an essential pre-requisite for the technique to have any chance of wide application, since the turn-round time, *i.e.* the time between the injections of successive samples, is approximately two hours. This means that in an ordinary working day a maximum of only four runs is possible and, in practice, it is difficult to achieve more than three runs per day.

This paper describes an automated system and its application to the analysis of hydrocarbon mixtures in the gasoline boiling range, *i.e.*  $-42^{\circ}$  to about 220°.

#### EXPERIMENTAL

#### GC apparatus and automatic sampler

The apparatus used was a standard Perkin-Elmer Model F30 gas chromato-

graph equipped with a Model AS41 auto-sampler<sup>3</sup> and an oven capable of operating below ambient temperature by means of a controlled supply of liquid nitrogen. A sample size of  $0.5 \,\mu$ l of the mixture to be analysed is injected manually from a small syringe into an aluminium capsule, which is then sealed by crimping the open end. Ten of these capsules can be placed in a magazine and up to ten magazines can be loaded into the sampler. Injection into the gas chromatograph takes place when a capsule is withdrawn from its magazine, is passed through two pairs of O-ring seals and is pierced by a hollow spike in a hot part of the injection zone, which is also swept by the carrier gas. At the end of the cycle the empty capsule is withdrawn from the apparatus. Once the magazines containing the loaded capsules are placed in the equipment, the cycle of operations is completely automatic. In addition, the sampler gives a two-digit signal to identify each capsule; the electrical signal from the second of these digits is used to actuate the other automatic cycles —temperature programming, pressure programming, data capture, etc.

The procedure for filling and sealing the capsules is a relatively time-consuming operation compared with that of auto-samplers operating on an automated syringe system. However, once the sample is sealed in the capsule it can be safely left for a period of months without loss of low-boiling components and, if the analysis time is two hours, then two or three minutes to fill and seal a capsule is of little consequence. Great care must be taken to maintain the integrity of the sample by avoiding loss of volatile components whilst filling the capsules, especially if only 1–2 ml of sample is available. The sample containers are cooled in dry ice and opened and are then allowed to warm up to 0° in an ice-water bath. About 10  $\mu$ l are removed in a syringe previously cooled in dry ice and 0.5  $\mu$ l is placed in the capsule, which is also cooled in dry ice. The capsule is then sealed in the special crimping device.

Apart from difficulties in sealing capsules at one stage, owing to incorrect alignment of the jaws on the crimping tool, the sampler has worked extremely well provided that routine maintenance is carried out on critical parts at regular intervals.

# Analytical conditions

A pair of 70 m  $\times$  0.25 mm I.D. stainless-steel columns coated with squalane have been used throughout this work and show no obvious signs of deterioration after five years of constant operation. The columns are temperature programmed from 0° to 95° at 2°/min. They are also pressure programmed with helium carrier gas from 16 to 65 p.s.i. at 0.5 p.s.i./min (115-454 kPa at 3.5 kPa/min), to give a flow-rate varying from 0.5 to 2.0 ml/min. A sample size of 0.5  $\mu$ l is used with a split ratio of 1:60. Under these conditions, the efficiency of the column is 140,000 theoretical plates for n-heptane. As can be seen from the chromatogram in Fig. 1, the major part of the gasoline has left the column after 60 min, but it needs nearly as long again to elute the remaining part. The reason for this is that the upper temperature limit for squalane for prolonged use is about 100°. If it were possible to increase the final temperature to 150°, the overall analysis time could be halved. Unfortunately, none of the likely candidate stationary liquids we have tried to date (mainly methyl silicones) gives as good a separation as squalane so that we have retained it in spite of its drawbacks. A secondary reason for retaining squalane is that we have been able to utilize the peak identities established by gas chromatography-mass spectrometry (GC-MS) with a similar squalane column<sup>2</sup>.

# AUTOMATIC SYSTEM FOR GC OF HYDROCARBON MIXTURES

#### Data handling

It is obvious that with chromatograms of more than 200 peaks, sophisticated data handling techniques must be used. Electronic integrators giving lists of retention times and percentage peak areas represent a step in the right direction but still leave a large amount of data to process. The course eventually adopted made use of an Instem Datachrom-2 system employing a Digital Equipment Co PDP/11 computer. The system measures peak heights, records retention times, calculates and normalizes peak areas and, from calibration data stored in the memory, assigns chemical identities to peaks. In the normal mode of operation, manual operation is necessary to synchronize the start of data collection with the injection of sample into the gas chromatograph, to "accept" the calculated results and to re-set. In general, no channel (out of the twelve available) is permanently associated with any particular gas chromatograph, but an exception was made in the case of the F<sup>2</sup>0/AS41 combination. Software modifications supplied by Instem Ltd., and applicable to one specific channel, permitted the automatic acceptance of results, re-setting, and the storage of data on magnetic tape cassettes (Racal-Thermionic Ltd. "Digistore") as a dedicated peripheral with a writing speed of 350 characters per second. Additional standard output to a 10 characters per second teletype was retained as a programmable option. The capacity of the cassettes (approximately 50,000 characters) is sufficient to store the results from up to 14 analyses, and cassettes have to be changed only once a day.

# **Overall system control**

The Datachrom-2 system at Thornton possessed a number of limitations, in particular a relatively small capacity (16K core, 64K disk) and insufficient information from the manufacturers to permit program modifications. Each channel will supply one external command but only within the time, pre-set by the operator, in which that channel searches for data. The GC equipment, however, needs several signals in the "dead" time between the end of one analysis and the start of the next, *e.g.* to vent and re-set the pressure programmer requires three signals.

The problem was solved by using a Hewlett-Packard 9820 programmable calculator to supply the necessary signals; the general layout and timing diagram are shown in Figs. 2 and 3.

Recently, this rather clumsy hybrid system has been replaced by a Hewlett-Packard 3352 computer, and the Perkin-Elmer gas chromatograph is now linked to this via a standard Hewlett-Packard event control module.

## **RESULTS AND DISCUSSION**

Table I and Fig. 4 show the precision data obtained on the Datachrom II system for the quantitative output for some of the components of a gasoline. From Fig. 4 it can be seen that the percentage standard deviation tends to plateau-out at about 1.5% for components in concentrations greater than 2%. Quantitative figures obtained from the Hewlett-Packard computer and from an Infotronics 304 micro-processor differ marginally from the Datachrom values owing to the different logic built into the three systems, but the precision of the data from all three is essentially the same. Table II shows a comparison between experimentally determined percentage peak areas and the known composition of a synthetically prepared mixture. Relatively

| INTELLOW SOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12  |
| and the second state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 200334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 342142-a 343-S-THE-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0  |
| The rest of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7=  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 3x71N5d - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -12 |
| 3/47/8/74/73/00-8,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| S-NETHURDRAUK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 3-15-11-1-50E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |
| 3K3-5-X3H-52-2-2G; XH13H-5-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 317:15-57210 741:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18  |
| 322-0451H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 3162168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 3K3-2-X3H-W413H-S- 10 + 3NYX3H-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 2,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10,4 - 10, | 10  |
| ENTX3H WHEAT-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 5"5"«-12782141" bENITYE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |
| 3G-2-X3HUHI3A-1-99+3N2(494-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 5'2-DWE14474EX-5-EKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 3-KEHUNESKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18  |
| ۲۰۰۰ <b>آ</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 2×10−2 - 0-12×12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   |
| ₹<br>~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |
| 3452/269711413 <b>4</b> 40- <b>6</b> <sup>1</sup> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 3422/067L/kt/346C-5*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |
| 3/12/12/12/12/12/12/12/12/12/12/12/12/12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |









Fig. 3. Cycling operation of automated GC system.

## AUTOMATIC SYSTEM FOR GC OF HYDROCARBON MIXTURES

#### TABLE I

| PRECISION  | DATA. | FOR   | PEAK   | AREA  | MEASUREMENTS    | FGR  | SOME    | OF THE | COM- |
|------------|-------|-------|--------|-------|-----------------|------|---------|--------|------|
| PONENTS IN | A TY  | PICAL | . FULL | -RANG | E GASOLINE (ANA | LYSE | D 42 TI | MES)   |      |

| Peak identification                                    | Mean %<br>peak area,<br>x | Standard<br>deviation,<br>o | % Standard<br>deviation,<br>V* |
|--------------------------------------------------------|---------------------------|-----------------------------|--------------------------------|
| Isobutane                                              | 1.56                      | 0.110                       | 7.05                           |
| Isobutene + but-1-ene                                  | 0.555                     | 0.028                       | 5.12                           |
| Isopentane                                             | 1.889                     | 0.046                       | 2.44                           |
| 2.2-Dimethylbutane                                     | 0.382                     | 0.010                       | 2.62                           |
| 3-Methylpentane + ethylbut-1-ene                       | 2.89                      | 0.042                       | 1.42                           |
| cis-3-Methylpent-2-ene + cis-2-hexene                  | 4.84                      | 0.080                       | 1.65                           |
| Methylcyclopentane                                     | 2.63                      | 0.091                       | 3.46                           |
| Benzene                                                | 7.90                      | 0.100                       | 1.27                           |
| 3-Methylhexane                                         | 3.29                      | 0.035                       | 1.07                           |
| cis-1.2-Dimethylcyclopentane                           | 0.223                     | 0.006                       | 2.65                           |
| 2.5-Dimethylhexane                                     | 0.812                     | 0.020                       | 2.36                           |
| Toluene                                                | 10.72                     | 0.170                       | 1.58                           |
| 2.2-Dimethyl-3-ethylpentane $+$ 2-methyl-4-ethylhexane | 0.149                     | 0.010                       | 6.37                           |
| 1.3.5-Trimethylbenzene                                 | 0.296                     | 0.011                       | 3.83                           |
| n-Propylbenzene                                        | 0.410                     | 0.020                       | 4.87                           |
| 1,2,3-Trimethylbenzene                                 | 0.771                     | 0.024                       | 3.15                           |
| 1,3-Dimethyl-5-ethylbenzene                            | 0.330                     | 0.018                       | 5.44                           |
| 1.4-Dimethyl-2-ethylbenzene                            | 0.160                     | 0.007                       | 4.37                           |
| secButylbenzene                                        | 0.116                     | 0.005                       | 4.38                           |

$$V = \frac{100\sigma}{\bar{x}}$$

poor agreement is shown between the two sets of values for toluene and ethylbenzene, but this is not surprising in view of the well known deviation in response of flame ionization detectors for the lower aromatics, for which no correction factor was



Fig. 4. Precision data for peak area measurements.

## TABLE II

COMPARISON OF EXPERIMENTAL AND KNOWN COMPOSITION FOR A SYNTHETIC MIXTURE

| No. | Hydrocarbon                    | Time, sec      | % Area | % Weight  |
|-----|--------------------------------|----------------|--------|-----------|
| 1   | 2-Methylbutane                 | 656            | 10.59  | 10.41     |
| 2   | Pent-1-cae                     | 676            | 0.64   | 0.71      |
| 3   | n-Pentane                      | 739            | 1.23   | 0.92      |
| 4   | trans-Pent-2-ene               | 744            | 0.63   | հա        |
| 5   | cis-Pent-2-ene                 | 2756           | 0.42   | 50.55     |
| 6   | 3,3-Dimethylbut-1-ene          | ∫ <sup>1</sup> | 0.42   | - 0.10    |
| 7   | 2-Methylbut-2-cnc              | 790            | 0.05   | 0.03      |
| 8   | 2,2-Dimethylbutane             | 86 <b>7</b>    | 3.06   | 3.05      |
| 3   | 4-Methylpent-1-ene             | 926            | 0.17   | 0.20      |
| 10  | Cyclopentane                   | <b>984</b>     | 1.01   | 1.09      |
| 11  | 2,3-Dimethylbutane             | 1005           | 3.94   | 3.77      |
| 12  | 2-Methylpentane                | 1028           | 7.15   | 6.38      |
| 13  | 2-Methylpent-1-ene             | 1076           | 0.31   | 0.42      |
| 14  | Hex-1-ene                      | 1087           | 1.12   | 1.10      |
| 15  | 2-Ethylbut-1-ene               | 1139           | 0.46   | 0.53      |
| 16  | trans-Hex-2-ene                | 1165           | 0.14   | 0.98 c/t  |
| 17  | 2-Methylpent-2-ene             | 1171           | 0.26   | 0.37      |
| 18  | n-Hexane                       | 1181           | 1.25   | 1.26      |
| 19  | 4,4-Dimethylpent-1-ene         |                |        | 0.17      |
| 20  | cis-3-Methylpent-2-ene         | 1195           | 0.58   | 10 28 c/r |
| 21  | cis-Hex-2-ene                  |                |        | 0.30 C/I  |
| 22  | trans-3-Methylpent-2-ene       | 1246           | 0.10   | í _       |
| 23  | Methylcyclopentane             | 1305           | 10.20  | 0.22      |
| 24  | 2,3-Dimethylbut-2-ene          | 1309           | 10.38  | 0.25      |
| 25  | 2,4-Dimethylpentane            | 1335           | 0.52   | 0.60      |
| 26  | Benzene                        | 1358           | 1.35   | 1.42      |
| 27  | 2,2,3-Trimethylbutane          | ]1274          | 1 10   | 0.49      |
| 28  | 2.4-Dimethylpent-1-ene         | 13/4           | 1.10   | 0.58      |
| 29  | 2.4-Dimethylpent-2-ene         | 1404           | 0.11   | 0.11      |
| 30  | 3-Methylhex-1-ene              | 1412           | 0.48   | 0.51      |
| 31  | trans-2-Methylhex-3-ene        | 1437           | 0.13   | 0.18      |
| 32  | 5-Methylhex-1-ene              | 1446           | 0.38   | 0.43      |
| 33  | 4-Methylhex-1-ene              | 1.404          | 1.42   | 0.13      |
| 34  | Cyclohexane                    | 1494           | 1.45   | 1.33      |
| 35  | 2,3-Dimethylpentane            | 11567          | 0.44   | 0.27      |
| 36  | 1.1-Dimethylcyclopentane       | \$1303         | 0.44   | 0.45      |
| 37  | 3-Methylhexane                 | 1597           | 0.31   | 0.37      |
| 38  | 2-Methylhex-1-ene              | 1609           | 0.15   | 0.16      |
| 39  | cis-1.3-Dimethylcyclopentane   | 1617           | 0.16   | 0.42 c/t  |
| 40  | Hept-1-ene                     | 1632           | 0.38   | 0.45      |
| 41  | trans-1.3-Dimethylcyclopentane | 1.00           | 1      | ]0.10     |
| 42  | cis-2.5-Dimethylhex-3-ene      | \$1045         | 0.39   | 90.18     |
| 43  | 3-Ethylpentane                 | 1649           | 1      | 0.13      |
| 44  | trans-1.2-Dimethylcyclopentane | 1657           | 0.38   | 0.43 c/t  |
| 45  | trans-Hent-3-ene               |                | 0.34   | 0.06      |
| 46  | 2.2.4-Trimethylpentane         | <b>}1665</b>   | 4.J.T  | 0.06      |
| 47  | cis-Hent-3-ene                 | 1679           | ]      | 0.37 c/t  |
| 48  | 2. Methylber 2 ene             | 1686           | 20.21  | 0.11      |
| 49  | trans-2,5-Dimethylhex-3-ene    | 1712           | 0.17   | 0.20      |

# AUTOMATIC SYSTEM FOR GC OF HYDROCARBON MIXTURES

#### TABLE II (continued)

| No.        | Hydrocarbon                       | Time, sec | % Area            | % Weight        |
|------------|-----------------------------------|-----------|-------------------|-----------------|
| 50         | trans-Hept-2-ene                  | 1730      | ]                 | 0.03            |
| 51         | n-Heptane                         | 1739      | 1.91              | 1.78            |
| 52         | cis-Hept-2-ene                    | 1753      | 0.28              | 0.96 c/t        |
| 53         | cis-1,2-Dimethylcyclopentane      | 1840      | 0.02              |                 |
| 54         | Methylcyclohexane                 | 1867      | 0.78              | 0.83            |
| 55         | 2,5-Dimethylhexane                | 1899      | 0.29              | 0.41            |
| 56         | 2,4-Dimethylhexane                | ]1020     | 0.64              | 0.06            |
| 57         | Ethylcyclopentane                 | (1920     | 0.44              | 0.42            |
| 58         | 2,3-Dimethylhex-1-ene             | 1960      | 0.23              | 0.30            |
| 59         | trans-2-Methylhept-3-ene          | 1976      | 0.10              | 0.11            |
| 60         | Toluene                           | 1993      | 5.77              | 4.90            |
| 61         | 2.5-Dimethylbex-2-ene             | 2025      | 0.17              | 0.20            |
| 62         | 2.3.4-Trimethylpentane            | 2030      | 0.15              | 0.14            |
| 63         | 2 3-Dimethylherane                | 2030      | 0.15              | 0.14<br>A 10    |
| 64         | 2.Methylbentane                   | 2001      | 0.10              | 0.12            |
| 65         | 4-Methylheptane                   | 2110      | 0.20              | 0.32            |
| 66         | 3 A-Dimathylbayana                | 2123      | 0.12              | 0.13            |
| 60         | 2 Methylhestere                   | 2141      | 0.20              | 0.24            |
| 01<br>29   | 3 Ethulhavere                     | 2153      | 0.21              | 0.18            |
| 00<br>60   | 3-Ethymexane                      | {         |                   | 0.06            |
| 99<br>70   | 2-Methymept-1-ene                 | 2176      | 0.26              | 0.05            |
| /0         | 2,2,5-1 rimethylhexane            | J         |                   | 0.25            |
| 71         | Oct-1-cnc                         | 2205      | 0.30              | 0.38            |
| 72         | trans-1,4-Dimethylcyclohexene     | 2228      |                   | 0.41            |
| 73         | cis-1,3-Dimethylcyclohexene       |           | lina              | 0.61 <i>c/t</i> |
| 74         | 1,1-Dimethylcyclohexane           | 2236      | J <sup>1.04</sup> | 0.37            |
| 75         | 2-Methylhept-2-ene                | 2256      | 0.10              | 0.10            |
| 76         | trans-Oct-2-ene                   | 2301      | 0.13              | 0.64 c/t        |
| 77         | n-Octane                          | 22200     |                   | 3.77            |
| 78         | trans-1,2-Dimethylcyclohexene     | \$2308    | ]                 | 0.42            |
| 79         | cis-Oct-2-ene                     | 2325      | 4.82              | _               |
| 5 <b>0</b> | trans-1.3-Dimethylcyclohexene     | 1         | ,                 | _               |
| 81         | cis-1-4-Dimethylcyclohexene       | 2344      | 0.56              | 0.43            |
| 82         | 2.4-Dimethylhentane               | 2430      | 1.04              | 1.02            |
| 83         | 2 6-Dimethylhentane               | 2465      | 0.44              | 0.63            |
| RA         | cis-1 2-Dimethylcycloherene       | 2405      | )                 | 0.05            |
| 25         | 2 S-Dimethylbentane               | 2400      | <b>\0.74</b>      | 0.16            |
| 26         | Ethylbenzene                      | 2576      | 1 57              | 6.10            |
| 27         | Languenzene<br>14-Dimethylbenzene | 2320      | 7.52              | 0.33            |
| 25         | 1.3 Dimethylbenzene               | 2000      | 2.13              | 2.11            |
| 20         | 2.3 Dimethylbentene               | 2622      | 3.49              | 2.43            |
| )7<br>V0   | 2,5-Dimensioneptane               | J         |                   | 0.70            |
|            | 3,4-Dimetnyineptane               | 2641      | 0.25              | 0.25            |
| 1          | 4-Methyloctane                    | 2668      | 0.93              | 0.13            |
| 2          | 2-Methyloctane                    | 2678      | J                 | 0.81            |
| 5          | 3-Methyloctane                    | 2710      | 0.19              | 0.19            |
| 14.<br>    | 1,2-Dimethylbenzene               | 2733      | 3.64              | 3.21            |
| 5          | Non-l-ene                         | 2773      | 0.55              | 0.62            |
| б          | Isopropyibenzene                  | 17877     | A A7              | 0.65            |
| 7          | n-Nonane                          | juir i    | 7.71              | 3.48            |
| 18         | n-Propylbenzene                   | 3046      | 2.56              | 2.52            |
| 19         | 3-Ethyltoluene                    | 3133      | 0.10              | 0.08            |
| 5          | A-Ethyltoluene                    | 2147      | 0.16              | 0.14            |

215

(Continued on p. 216)

| No.          | Hydrocarbon                | Time, sec | % Area | % Weight |
|--------------|----------------------------|-----------|--------|----------|
| 101          | 2-Ethyltoluene             | ]2240     | 0.21   | 0.15     |
| 102          | 5-Methylnonane             | \$5240    | 0.21   | 0.07     |
| 103          | 4-Methylnonane             | 3251      | 0.15   | 0.13     |
| 104          | 2-Methylnonane             | 12275     | 1.31   | 0.49     |
| 105          | 1,3,5-Trimethylbenzene     | 13213     | 1.41   | 0.94     |
| 106          | tertButylbenzene           | 3305      | 0.29   | 0.31     |
| 107          | 3-Methylnonane             | 3323      | 0.22   | 0.19     |
| 108          | 1,2,4-Trimethylicenzene    | 3410      | 2.52   | 1.78     |
| 109          | Dec-1-enc                  | )         |        | 0.25     |
| 110          | Isobutylbenzene            | 3461      | 0.41   | 0.22     |
| 111          | secButyibenzene            | ſ         |        | 0.23     |
| 112          | n-Decane                   | 3567      | 1.32   | 1.39     |
| 113          | 1,2,3-Trimethylbenzene     | 2675      | 1.21   | 1.23     |
| 114          | 4-Isopropyltoluene         | 5025      |        | 0.11     |
| 115          | Indan                      | 3647      | 0.49   | 0.52     |
| 116          | 1,3-Diethylbenzene         | 3801      | 0.29   | 0.28     |
| <b>117</b> . | n-Butylbenzene             | 3868      | 0.59   | 0.65     |
| 118          | 4-n-Propyltoluene          | 3906      | 0.27   | 0.21     |
| 119          | 4-Methyldecane             | 4178      | 0.16   | 0.14     |
| 120          | 2-Methyldecane             | 4233      | 0.27   | 0.25     |
| 121          | 3-Methyldecane             | 4303      | 0.05   | 0.07     |
| 122          | n-Undecane                 | 4729      | 0.76   | 0.91     |
| 123          | 1,2,4,5-Tetramethylbenzene | 4780      | 0.51   | 0.51     |
| 124          | 1,2,3,5-Tetramethylbenzene | 4869      | 0.26   | 0.24     |
| 125          | 1,2,3,4-Tetramethylbenzene | 5284      | 0.08   | 0.08     |
| 126          | Naphthalene                | 5578      | 0.09   | 0.10     |

TABLE II (continued)

applied. With the exception of these lower aromatics, components at 1% or greater concentration can be determined with an accuracy of about  $\pm 10\%$ , the error rising to  $\pm 20\%$  at concentrations below 0.5%. This accuracy was considered to be adequate for the project utilizing the data.

Table III and Fig. 5 show the precision data for the retention times of the compounds listed in Table I and obtained from the same set of 42 analyses. The variation in retention time reaches a minimum around the middle of the chromatogram and is larger at the beginning and the end. Overall, however, the retention time data show a remarkably high repeatability, especially considering that the analyses are both temperature and pressure programmed.

The main drawback of the technique is the rather long analysis time which, as indicated earlier, is partly due to the volatility of squalane. Apart from replacing this stationary liquid, the only other likely possibility is to improve the efficiency of the column. It is feasible that a column with a higher efficiency per unit length could effect a significant reduction in the analysis time, and a further reduction could be achieved by using hydrogen instead of helium as carrier gas to give a turn-round time of about 70–90 min. Another possible way of reducing analysis time would be by the use of so-called two-dimensional GC. This would involve the separation of of the saturates and olefins from the aromatics on a polar column, followed by complete separation on two relatively short, non-polar capillary columns connected in parallel.

#### TABLE III

# PRECISION DATA FOR PEAK RETENTION TIMES FOR SOME OF THE COMPONENTS IN A TYPICAL FULL-RANGE GASOLINE (ANALYSED 42 TIMES)

| Peak identification                                      | Mean retention time, sec* | Standard<br>deviation, o | % Standard<br>deviation, V |
|----------------------------------------------------------|---------------------------|--------------------------|----------------------------|
| Isobutane                                                | 462.5                     | 3.47                     | 0.75                       |
| Isobutene + out-1-ene                                    | 485.2                     | 3.45                     | 0.71                       |
| Isopentane                                               | 673.9                     | 4.96                     | 0.74                       |
| 2.2-Dimethylbutane                                       | 899.4                     | 5.11                     | 0.57                       |
| 3-Methylpentane + ethylbut-1-ene                         | 1140.1                    | 5,92                     | 0.52                       |
| cis-3-Methylpent-2-ene + cis-2-hexene                    | 1236.9                    | 5.43                     | 0.43                       |
| Methylcyclopentane                                       | 1370.3                    | 5.75                     | 0.42                       |
| Benzene                                                  | 1429.6                    | 6.08                     | 0.43                       |
| 3-Methylhexane                                           | 1685.2                    | 5.82                     | 0.35                       |
| cis-1.2-Dimethylcyclopentane                             | 1948.1                    | 5.66                     | 0.29                       |
| 2.5-Dimethylhexane                                       | 2032.6                    | 8.58                     | 0.42                       |
| Toluene                                                  | 2115.7                    | 6.48                     | 0.30                       |
| 2,2-Dimethyl-3-ethylpentane + 2-methyl-4-<br>ethylhexane | 2487.7                    | 6.20                     | 0.25                       |
| 1,3,5-Trimethylbenzene                                   | 2612.4                    | 6.88                     | 0.26                       |
| n-Propylbenzene                                          | 3261.0                    | 11.04                    | 0.33                       |
| 1.2.3-Trimethylbenzene                                   | 3533.6                    | 10.56                    | 0.30                       |
| 1.3-Dimethyl-5-ethylbenzene                              | 3952.5                    | 12.85                    | 0.33                       |
| 1,4-Dimethyl-2-ethylbenzene                              | 4431.4                    | 16.44                    | 0.37                       |
| secButylbenzene                                          | 5470.4                    | 23.64                    | 0.43                       |

• The flow conditions used here differed from those used to obtain the chromatogram in Fig. 1; hence, the retention times in the table and the figure do not correspond.



Fig. 5. Precision data of retention times.

### CONCLUSIONS

An apparatus has been assembled for the automatic GC analysis of complex hydrocarbon mixtures in the boiling range  $-42^{\circ}$  to 220°. The information obtained

can be presented as a conventional chromatogram, as a print-out of retention times and percent areas and on magnetic tape for further processing. The quantitative accuracy of the normalization method is not as high as can be achieved by other GC methods, such as internal standardization, but is thought to be adequate for most applications. The precision of the retention data is sufficient to enable automatic computer identification of many key peaks.

#### REFERENCES

- 1 E. R. Adlard, A. G. Butlin, B. D. Caddock and A. G. Green, J. Inst. Petrol., London, 57 (1971) 347.
- 2 W. N. Sanders and J. B. Maynard, Anal. Chem., 40 (1968) 527.
- 3 E. Otte and D. Jentzsch, in R. Stock (Editor), Gas Chromatography 1970, The Institute of Petroleum, London 1971, p. 218.